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The electromagnetic self-force on a charged spherical body
slowly undergoing a small, temporary displacement from a
position of rest
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National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown,
WV 26505, USA

Received 22 March 2000

Abstract. The self-force of classical electrodynamics on a charged ‘rigid’ body of radius R is
evaluated analytically for the body undergoing a slow (i.e., with a speed v � c), slight (i.e., small
compared toR), and temporary displacement from an initial position of rest. The results are relevant
to the Bohr–Rosenfeld analysis of the measurability of the electromagnetic field, which has been
the subject of a recent controversy.

1. Introduction

The problem of the classical electromagnetic self-force on an extended charged body moving
along a given trajectory is interesting in its own right; its analysis under some greatly
simplifying conditions is a key ingredient of the well known paper on the measurability of
the electromagnetic field of Bohr and Rosenfeld (BR) [1]. BR derived an eight-dimensional-
integral expression for a time average F̄BRx of the self-force plus the electrostatic force due
to a stationary neutralizing body of opposite charge, acting on a charged ‘rigid’ body† that is
undergoing an x direction displacement whose time dependenceDx(t1) approaches sufficiently
closely a steplike trajectory Dx
(T − t1)
(t1), Dx = const (
(x) is the Heaviside step
function). The expression of BR is written as

F̄BRx = ρ2
c V

2TDxĀ
(I,I)
xx (1)

where V and ρc are the displaced body’s volume and constant charge density, respectively, and
the quantity Ā(I,I)

xx is the BR geometric factor for two fully coinciding space–time regions I of
volume V and duration T [1, 2]:

Ā(I,I)
xx = − 1

V 2T 2

∫
T

dt1

∫
T

dt2

∫
V

dr1

∫
V

dr2

(
∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
. (2)

Here and henceforth, t = t2 − t1, r = |r2 − r1| and units such that the speed of light c = 1
are used. This result is valid only when the displacement |Dx | � a, where a characterizes
the linear dimensions of the body, and the speed‡ |Ḋx(t1)| � c—which implies a further
condition that |Dx | � c�t , where �t � T is the duration of the time intervals during which

† Of course, absolute rigidity is not allowed in a relativistic theory, and BR went to great lengths to justify an
assumption that the body is only rigid to the degree that all its parts participate sufficiently uniformly in the body’s
assumed motion.
‡ We shall display explicitly the factor c in some inequalities.
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the displacement Dx(t1) goes smoothly from zero to the constant value Dx and from Dx back
to zero at the beginning and end, respectively, of the given time period 0 � t1 � T .

Recently, Compagno and Persico (CP) [3] have questioned the use of a steplike trajectory
in the BR calculation of the self-force, and have drawn the conclusion that the BR result
that a single space–time-averaged component of the electromagnetic field can be measured
to arbitrary accuracy only using a compensating spring is incorrect since it is based on
expression (1) that assumes an unphysical steplike trajectory. The paper of CP is criticized in
a comment [4], where it is shown by an explicit calculation that the limiting BR time-averaged
self-force (1) approximates correctly the self-force obtained with a ‘physical’ trajectory of
|Ḋx(t1)| � c but with a sufficiently short duration�t of the initial and final trajectory segments
outside which the body is essentially at rest. In the reply of CP [5], this criticism is rejected,
claiming that the calculation in [4] is incorrect.

In the present paper, we obtain analytical expressions for the time dependence as well as
a time average of the self-force on a spherical charged ‘rigid’† body of radius R moving on
a trajectory that is subject to the special BR conditions but is not necessarily of a steplike
character. Exploiting the spherical symmetry of the problem, we perform the requisite
integrations directly with no recourse to the Fourier transform methods used in [2, 4], but
in full agreement with the results obtained using the Fourier transform method in [4] and
rejected by CP as incorrect. The expressions obtained are relatively simple, and it is surprising
that such or similar results do not seem to have appeared in the literature before (with partial
exception of papers [2,4])—which perhaps is a factor behind the recently expressed reluctance
to accept them, and their implications, as correct.

2. The time average of the self-force

First, we outline the derivation of a multidimensional-integral expression for the self-force in
terms of the body’s trajectoryDx(t1) that, while conforming to the BR conditions |Dx(t1)| � R

and |Ḋx(t1)| � c, is not necessarily of a steplike character—apart from satisfying the condition
that Dx(t1) = 0 for t1 < 0 and t1 > T . A detailed derivation of such an expression has
been given by CP [3]—but under the complicating conditions of a temporary removal of the
neutralizing body, which we shall consider simply as only permanently absent or present. The
displaced body’s time-dependent charge density is approximated to first order in a displacement
D(t1) as

ρ(r1, t1) = ρ[r1 − D(t1)] ≈ [1 − D(t1)·∇1]ρ(r1) (3)

where ρ(r1) is the body’s spherically symmetric charge density before its displacement. Using
this approximation and placing the differential operator D(t1) · ∇1 suitably using integration
by parts, the retarded potentials of the electromagnetic self-field of the body can be expressed
to first order in the displacement and neglecting also terms of order ḊD as

φ(r2, t2) =
∫

dr1

∫ ∞

−∞
dt1

ρ(r1, t1)

r
δ(t − r)

=
∫

dr1
ρ(r1)

r
+

∫
dr1ρ(r1)

∫ ∞

−∞
dt1D(t1) · ∇1

δ(t − r)

r
(4)

A(r2, t2) =
∫

dr1

∫ ∞

−∞
dt1

ρ(r1, t1)Ḋ(t1)

r
δ(t − r)

=
∫

dr1ρ(r1)

∫ ∞

−∞
dt1Ḋ(t1)

δ(t − r)

r
. (5)

† We employ here the same concept of rigidity as BR (see the first footnote).
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Assuming now that the displacement is along the x direction, the x component of the body’s
electric self-field can be written as

Ex(r2, t2) = −∂φ(r2, t2)

∂x2
− ∂Ax(r2, t2)

∂t2

= −
∫

dr1
∂

∂x2

ρ(r1)

r

−
∫

dr1ρ(r1)

∫ ∞

−∞
dt1Dx(t1)

(
∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
. (6)

(The magnetic field is neglected in view of the assumption that the body’s speed |Ḋx(t1)| � c.)
This results in a self-force Fx(t2) on the displaced body given to first order in Dx by

Fx(t2) =
∫

dr2

{[
1 − Dx(t2)

∂

∂x2

]
ρ(r2)

}
Ex(r2, t2) = F0x(t2) + Fx(t2) (7)

where

F0x(t2) = −Dx(t2)ρ
2
c

∫
|r1|<R

dr1

∫
|r2|<R

dr2
∂2

∂x2
2

1

r
(8)

which equals ρ2
c V

2Dx(t2)/R
3† and is, for |Dx | � R, the electrostatic repulsive force that

would be due to an identical body placed at the undisplaced position; and

Fx(t2) = −ρ2
c

∫
|r1|<R

dr1

∫
|r2|<R

dr2

∫ T

0
dt1Dx(t1)

(
∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
(9)

which would be the net force in the presence of an oppositely charged neutralizing body
permanently occupying the space region of the undisplaced body‡, as the electrostatic force
of attraction to the neutralizing body would cancel the force F0x(t2) of equation (8). We
assumed in equations (8) and (9) that the body has a constant charge density ρc, and replaced
the infinite region of the time integration with the time interval (0, T ) in view of the fact that
the displacement Dx(t1) ≡ 0 outside this interval. We shall be calling, following CP, the force
Fx(t2) of equation (9) also a ‘self-force’.

We now evaluate the time average of the self-force as a one-dimensional quadrature
involving the body’s trajectory Dx(t1). A time-averaged self-force F̄x is obtained by averaging
expression (9) with respect to time t2,

F̄x = 1

T

∫ T

0
dt2Fx(t2) (10)

and we note that when the trajectory Dx(t1) in (9) is replaced formally by a steplike trajectory
Dx
(T − t1)
(t1) the averaging results in the limiting BR time-averaged self-force F̄BRx of
equation (1). The time-averaged self-force (10) can be written as

F̄x = ρ2
c V

2

T

∫ T

0
dt1Dx(t1)f (t1) V = 4

3πR3 (11)

where the function f (t1) is defined by

f (t1) = − 1

V 2

∫
|r1|<R

dr1

∫
|r2|<R

dr2

∫ T

0
dt2

(
∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
. (12)

† This follows from the replacement of ∂2/∂x2
2 in (8) by 1

3 ∇2
2 , which is allowed by the spherical symmetry of the

problem, and the use of ∇2
2 (1/r) = −4πδ(3)(r2 − r1).

‡ The bodies may be assumed to have a fine tubular structure that enables them to move without hindrance through
each other along a given direction (see [1]).
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We note with CP [5] that the function f (t1) can be written as

f (t1) = 1

V 2

∫
|r1|<R

dr1

∫
|r2|<R

dr2

∫ T

0
dt2

[
1

3

(
∇2

2 − ∂2

∂t2
2

)
+

2

3

∂2

∂t1∂t2

]
δ(t − r)

r
(13)

because ∂/∂x1 = −∂/∂x2 and ∂/∂t1 = −∂/∂t2 when operating on δ(t − r)/r , and ∂2/∂x2
2 can

be replaced by 1
3∇2

2 in view of the spherical symmetry of the problem. Using the well known
equation for the retarded Green function δ(t − r)/r ,(

∇2
2 − ∂2

∂t2
2

)
δ(t − r)

r
= −4πδ(3)(r2 − r1)δ(t2 − t1) (14)

and also performing the integration with respect to t2 in the second term of (13), f (t1) is
obtained as

f (t1) = − 1

R3
[
(T − t1) − 
(−t1)]

− 2

3V 2

∫
|r1|<R

dr1

∫
|r2|<R

dr2
1

r
[δ′(T − t1 − r) − δ′(−t1 − r)]. (15)

Defining an integral

I (s) = 1

V 2

∫
|r1|<R

dr1

∫
|r2|<R

dr2
δ′(s − r)

r
V = 4

3πR3 r = |r2 − r1| (16)

the function f (t1) can now be written as

f (t1) = − 1

R3
[
(T − t1) − 
(−t1)] − 2

3
[I (T − t1) − I (−t1)]. (17)

Due to the symmetry of the problem, the integral (16) reduces to a three-dimensional
quadrature:

I (s) = 9

2R3

∫ 1

0
dζ1 ζ

2
1

∫ 1

0
dζ2 ζ

2
2

∫ 1

−1
dx

δ′(ξ −
√
ζ 2

1 + ζ 2
2 − 2ζ1ζ2x)√

ζ 2
1 + ζ 2

2 − 2ζ1ζ2x

ξ = s

R
. (18)

Let us perform the integration with respect to x first. On the substitution ξ − (ζ 2
1 + ζ 2

2 −
2ζ1ζ2x)

1/2 = y, this yields

∫ 1

−1
dx

δ′(ξ −
√
ζ 2

1 + ζ 2
2 − 2ζ1ζ2x)√

ζ 2
1 + ζ 2

2 − 2ζ1ζ2x

= δ[
√
(ζ1 − ζ2)2 − ξ ] − δ[

√
(ζ1 + ζ2)2 − ξ ]

ζ1ζ2
. (19)

The integration with respect to a radial variable, say ζ1, can be done using the rule δ[f (x)] =∑
i δ(x −xi)/|f ′(xi)|, where xi are the roots of f (x) = 0; δ[f (x)] = 0 when there are no real

roots of f (x) = 0. When ξ � 0, the roots of f+(ζ1) ≡ [(ζ1 + ζ2)
2]1/2−ξ are ζ

(+)
1i = −ζ2 ± ξ ,

and the roots of f−(ζ1) ≡ [(ζ1 − ζ2)
2]1/2 − ξ are ζ

(−)
1i = ζ2 ± ξ , with |f ′

±(ζ
(±)
1i )| = 1 for all

these roots; when ξ < 0, there are no real roots of f±(ζ1) = 0. We thus obtain

K(ζ2, ξ) ≡
∫ 1

0
dζ1 ζ

2
1
δ[

√
(ζ1 − ζ2)2 − ξ ] − δ[

√
(ζ1 + ζ2)2 − ξ ]

ζ1ζ2

= 
(ξ)

∫ 1

0
dζ1

ζ1

ζ2
[δ(ζ1 − ζ2 + ξ) + δ(ζ1 − ζ2 − ξ)

−δ(ζ1 + ζ2 + ξ) − δ(ζ1 + ζ2 − ξ)]

= 
(ξ)

ζ2
[(ζ2 + ξ)
(1 − ζ2 − ξ) + (ζ2 − ξ)
(1 + ζ2 − ξ)]

0 < ζ2 < 1. (20)
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Finally,

I (s) = 9

2R3

∫ 1

0
dζ2 ζ

2
2 K(ζ2, ξ) = 3

4R3
(2 − ξ)(2 − 2ξ − ξ 2)
(ξ)
(2 − ξ) ξ = s

R

(21)

and, using this in equation (17), the function f (t1) is evaluated for 0 < t1 < T in closed form
as

f (t1) = − 1

R3
− 1

2R3
(2 − χ)(2 − 2χ − χ2)
(2 − χ) χ = T − t1

R
0 < t1 < T

(22)

which completes the evaluation of the time-averaged self-force (11) as a one-dimensional
quadrature involving the test body’s displacement Dx(t1). The BR geometric factor (2) for
coinciding spherical space–time regions can now be obtained in closed form as

Ā(I,I)
xx = 1

T 2

∫ T

0
dt1f (t1) = − 1

R4κ
− 1

8R4κ
(4 + κ)(2 − κ)2
(2 − κ) κ = T

R
(23)

in agreement with equation (100) of [2]. The terms −1/R3 and −1/R4κ in expressions (22)
and (23), respectively, are due to the electrostatic force of attraction to the neutralizing body—
when the latter is absent, or one is interested only in the proper self-force itself, these terms must
be subtracted from the above expressions. According to equation (23), the BR geometric factor
Ā(I,I)

xx is equal to the electrostatic term −1/R3T only when the duration of the displacement
T � 2R; the result of CP that Ā(I,I)

xx = −1/R3T for all values of T (see [5, equation (11)])
was obtained by an incorrect use of a Taylor expansion of the derivative of the delta function
in an integration with finite limits.

We assume that the trajectory Dx(t1) can be expanded about the point t1 = 0 as a Taylor
series, valid for 0 < t1 < T :

Dx(t1) =
∞∑
n=0

D(n)
x (0+)

n!
tn1 . (24)

This enables us to evaluate analytically the time-averaged self-force (11) in terms of the time
derivatives D(n)

x (0+) ≡ limt1→0+ dnDx(t1)/dtn1 using the closed-form expression (22) for the
function f (t1):

F̄x = ρ2
c V

2

T

∞∑
n=0

D(n)
x (0+)

n!

∫ T

0
dt1 t

n
1 f (t1)

= 3ρ2
c V

2

T R2

∞∑
n=0

RnD(n)
x (0+)

(n + 4)!
{[κ2 + 2(n + 2)κ + n(n + 3)](κ − 2)n+2
(κ − 2)

−κn+4 + (n + 3)(n + 4)κn+2 − (n + 2)(n + 3)(n + 4)κn+1} κ = T

R
. (25)

The electrostatic term −1/R3 in (22) contributes here one-third of the κn+1 term, and so the
time-averaged proper self-force itself (or the time-averaged ‘radiation-reaction’ component of
the ‘self-force’ [3, 5]) is obtained by replacing κn+1 in (25) with 2

3κ
n+1.

Figure 1 exhibits the dependence on the displacement duration T of the time-averaged
self-force F̄x for a trajectory Dx(t1) = Dx[1− cos(2πt1/T )]
(T −t1)
(t1), as calculated
according to equation (25), together with that of the limiting time-averaged self-force F̄BRx ,
as given by equations (1) and (23).
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0 5 10 15 20
T

−3

−2.5

−2

−1.5

−1

−0.5

0

Φ
x

Figure 1. The normalized time-averaged self-force '̄x ≡ F̄x/ρ
2
c V

2Dx calculated using
equation (25) for a trajectory Dx(t1) = Dx [1 − cos(2πt1/T )]
(T − t1)
(t1) (solid curve), and
using equations (1) and (23) for the steplike trajectory Dx(t1) = Dx
(T − t1)
(t1) (dotted curve).
Units such that the speed of light c = 1 and the radius of the body R = 1 are used.

3. The time dependence of the self-force

Using the results obtained in the course of calculating the time average of the self-force, we
can also evaluate analytically the time dependence Fx(t2) of the self-force in terms of the
derivatives D(n)

x (0+) of the body’s trajectory Dx(t1). The self-force (9) can be written as

Fx(t2) = ρ2
c V

2
∫ T

0
dt1Dx(t1)g(t2 − t1) (26)

where the function g(t) is defined by

g(t) = − 1

V 2

∫
|r1|<R

dr1

∫
|r2|<R

dr2

(
∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
(27)

which differs from the definition (12) of the functionf (t1) only by the absence of the integration
with respect to time t2. Thus, using equation (17), the function g(t) can be expressed in terms
of the derivative of the integral I (s), and using expression (21) for I (s), we obtain

g(t) = − 1

R3
δ(t) − 2

3

dI (t)

dt
= − 3

R3
δ(t) +

3

2R4
(2 − ξ 2)
(ξ)
(2 − ξ) ξ = t

R
. (28)

Only one-third of the δ(t) term on the right-hand side arises from the electrostatic term as the
derivative of the step function 
(ξ) in I (s) also contributes to it. Using in equation (26) the
closed-form expression (28) for g(t) and the Taylor expansion (24) for Dx(t1) in the non-delta-
function term, we obtain the following analytical expression for the time dependence Fx(t2)
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0 1 2 3
t
2

−4

−2

0

2

4

Φ
x(t

2)

Figure 2. The normalized self-force 'x(t2) ≡ Fx(t2)/ρ
2
c V

2Dx calculated using equation (29)
for a trajectory Dx(t2) = Dx [1 − cos(2πt2/T )]
(T − t2)
(t2) (solid curve) and for the steplike
trajectory Dx(t2) = Dx
(T − t2)
(t2) (dotted curve), with T = 1.5. Units as in figure 1 are used.

of the self-force:

Fx(t2) = −3ρ2
c V

2

R3
Dx(t2) +

3ρ2V 2

R3

(t2)

∞∑
n=0

RnD(n)
x (0+)

(n + 3)!

×[
an(κ)
(κ − 2)
(2 − ξ) + bn(κ)κ

n+1
(−ξ) + cn(κ)
(ξ)
(2 − ξ)
]

an(κ) = [κ2 + 2(n + 1)κ + n2 + n − 2](κ − 2)n+1

bn(κ) = −κ2 + n2 + 5n + 6

cn(κ) = T n+1

Rn+1

[
bn(κ) − (n + 1)ξκ − 1

2
(n2 + 3n + 2)ξ 2

]

κ = t2

R
ξ = κ − T

R
.

(29)

We note that, interestingly, the electrostatic force −ρ2
c V

2Dx(t2)/R
3 of attraction to the

neutralizing body contributes here only one third of the term that is directly proportional
to the instantaneous distance |Dx(t2)| � R from the neutralizing body. The averaging of
expression (29) according to equation (10) confirms equation (25) for the time-averaged self-
force F̄x ; as expected, the self-force Fx(t2) vanishes when the variable ξ � 2 (i.e., when
t2 � T + 2R). The limiting BR self-force FBRx(t2) is obtained with a steplike trajectory
Dx(t2) = Dx
(T −t2)
(t2), for which only the n = 0 term (with D(0)

x (0+) = Dx) in the
series in equation (29) is nonzero.

Figures 2 and 3 show the time dependence of the self-force Fx(t2), calculated using
equation (29) for the trajectory Dx(t2) = Dx[1− cos(2πt2/T )]
(T −t2)
(t2) and for the
limiting steplike trajectory Dx
(T −t2)
(t2).

An alternative expression for the self-force Fx(t2) in terms of the derivatives D(n)
x (t2) at a

current time t2 along the trajectory should be instructive since the radiation-reaction force is
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0 1 2 3 4
t
2

−4

−3

−2

−1

0

1

2

3

Φ
x(t

2)

Figure 3. The normalized self-force 'x(t2) as in figure 2 but for a displacement duration T = 2.5.

usually expressed in terms of such derivatives. This can be done easily by suitably changing
the integration variable in equation (26) before expanding the trajectory in a Taylor series:

Fx(t2) = ρ2
c V

2
∞∑
n=0

(−1)n

n!
D(n)

x (t2)

∫ t2

t2−T

dt tng(t). (30)

However, this is valid only for t2 < T , as the function Dx(t2) ≡ 0 for t2 > T and as such
cannot be expanded about a point t2 > T for use in the interval (0, T ). The integration in
equation (30) with the closed-form expression (28) for the function g(t) leads to the following
result:

Fx(t2) = −3ρ2
c V

2

R3
Dx(t2) − 3ρ2

c V
2

2R3

(t2)

∞∑
n=0

(−1)nRnD(n)
x (t2)

(n + 3)(n + 1)!

×{[2n+2(n − 1) − dn(κ)]
(κ − 2) + dn(κ)}
dn(κ) = [(n + 1)κ2 − 2n − 6]κn+1 κ = t2

R
<

T

R
.

(31)

For times t2 > 2R (i.e., for κ > 2), equation (31) gives

Fx(t2) = −ρ2
c V

2

R3
Dx(t2) − 24ρ2

c V
2

R3

∞∑
n=0

(−2)nRn+2D(n+2)
x (t2)

(n + 5)(n + 3)(n + 2)n!
2R < t2 < T. (32)

Here, the original n = 0 term reduced the first term of equation (31) to the electrostatic force of
attraction to the neutralizing body, the original n = 1 term vanished and the summation of the
series was relabelled so that it now begins with the D(2)

x (t2) term. The series in equation (32)
agrees with the expression given by Jackson [6]† for the electromagnetic self-force on a body
carrying a spherically symmetric charge distribution. This can be seen on noting that, in

† Note that Jackson’s self-force is defined so that its sign is opposite to ours.
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the case of a uniform spherically symmetric charge density, the integral appearing in that
expression has the following value:∫

|r1|<R

dr1

∫
|r2|<R

dr2 r
n−1 = 9V 22n+2Rn−1

(n + 5)(n + 3)(n + 2)
. (33)

This integral was evaluated by reducing it to a three-dimensional quadrature in the same way
as that of the reduction of integral (16) to integral (18) and performing the resulting three-
dimensional integral analytically.

In conclusion, we remark that the fact that the time-averaged self-force (11) is proportional
to the displacement Dx even in the absence of the neutralizing body—for a displacement
duration T < 2R and in the limit of a steplike trajectory—does not contradict the translational
invariance of the Lagrangian of the system consisting of the displaced body and the
electromagnetic field. Such invariance is irrelevant to the case under consideration because
the body is assumed to be displaced by an external force whose origin is outside this system.
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